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Abstract 

A solution to the energy-overlap problem in Lane 
diffraction is described that does not require redundancy 
in the measurements. The new method follows a 
Bayesian approach with multidimensional probability 
density functions. The only assumption made is the 
validity of Wilson statistics. The intensity components 
of reflection multiplets are deconvoluted and estimates 
of their precision are obtained. The Laue patterns are 
processed to their physically relevant wavelength- 
dependent resolution limit; no 'soft parameters' are 
involved. The Bayesian method may also be applied to 
deconvoluting spatial overlaps. The power of the 
method is demonstrated by a test application to bovine 
trypsin. The completeness at low and medium resolu- 
tion as well as at very high resolution (1.4A) is 
enhanced very substantially as compared with standard 
procedures; the 'low-resolution hole' problem is solved. 
As a consequence, the contrast in electron-density maps 
improves so far that they become comparable in quality 
with maps from monochromatic data at high resolution. 
The new method is Of interest for all types of Laue 
diffraction experiments, in particular for single-shot 
time-resolved studies on short time scales. Simulation 
calculations for single-shot Laue conditions and for the 
disorder-order transition in trypsinogen as a model 
system demonstrate the potential power of applications 
in protein crystallography that combine high resolution 
and Bayesian processing. 

1. Introduction 

Laue diffraction from protein crystals permits simul- 
taneous exploration of a large volume in reciprocal 
space (Hohlwein & Mason, 1981; Moffat, Szebenyi & 
Bilderback, 1984). Under favourable conditions char- 
acterized by a broad incident X-ray wavelength 
distribution (e.g. 0.5-2A), a high-symmetry space 
group and high crystalline order, the simultaneously 
excited reflection spots may yield structure-factor 
amplitudes for a high percentage of all possible 
independent reflections (Cruickshank, Helliwell & 
Moffat, 1987). Owing to the high spectral brightness 

© 1996 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

in the hard X-ray wavelength range of a number of 
synchrotron-radiation sources, including in particular 
wigglers with short critical wavelengths, such a Lane 
diffraction pattern may be recorded within very short 
exposure times. This provides a potential for time- 
resolved investigation of protein molecules in structural 
states with lifetimes in the lxs-s regime (Hajdu et al., 
1987). Even single-bunch exposures with an intrinsic 
time resolution < lOOps are feasible (Szebenyi et al., 
1992). 

Extraction of crystallographic information from Laue 
diffraction patterns is complicated by a number of 
fundamental and practical problems. This explains why 
Lane techniques until now have found only limited 
application to protein structure analysis (Hajdu & 
Andersson, 1993). A number of major problems are 
related to the energetic and spatial overlapping of 
reflection spots in Laue patterns. The spatial overlap 
problem may be solved by fitting analytical reflection 
profiles provided that the crystal mosaic spread is not 
too broad (Ren & Moffat, 1995a). However, the 
problem of harmonic overlaps is fundamental. A 
considerable percentage of all measurable reflection 
spots in Laue diffraction patterns are multiplets contain- 
ing components from several different wavelengths. If 
the multiplets are not adequately deconvoluted into 
component intensities, the completeness in the diffrac- 
tion data is substantially reduced, in particular at low to 
medium resolution. This 'low-resolution hole' causes 
errors in Fourier calculations, hence low contrast and 
quality of electron-density maps (Bartunik, Bartsch & 
Huang, 1992; Andersson et al., 1992). A detailed 
discussion of such effects in terms of real-space point 
spread functions was given by Duke et al. (1992). 

The truncation of low-reflection orders causes 
different density distributions as compared with density- 
sharpening operations, which involve deliberate 
down-weighting of low-resolution reflections. This is 
illustrated in Fig. 1 for the example of a one- 
dimensional structural model containing widely 
separated density peaks. Unlike sharpening, the low- 
frequency pertubation due to truncation of reflection 
orders at low resolution clearly reduces the contrast in 
the density distribution. 
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Maps that are affected by the low-resolution hole may 
be improved by including a small number of model 
structure-factor amplitudes (Bartunik, Bartsch & 
Huang, 1992). Such a procedure, however, would 
introduce a bias in the interpretation of the maps, which 
is not acceptable considering the aim of time-resolved 
Laue diffraction studies is to detect unknown conforma- 
tional changes. In the specific case of a structure with 
high non-crystallographic symmetry, Hol and co-work- 
ers (Vellieux et al. ,  1993) were able to obtain good 
electron-density maps through sixfold density aver- 
aging, despite low completeness (37%) in their Laue 
data. In general, however, without appropriate decon- 
volution of overlaps, Fourier maps calculated with Laue 
structure factors necessarily must be of poor quality. 

A number of authors previously developed techniques 
aiming to reduce or solve the energy-overlap problem. 
HelliweU et al. (1989) suggested a method based on the 
use of a stack of photographic films and the dependence 
of the abso~t.ion in each film on the X-ray wavelength; 
the power of the method was limited by the poor energy 
resolution of photographic film (Wakatsuki, 1993). 
Another approach based on direct methods was 
proposed by Hao, Campbell, Harding & Helliwell 
(1993); the authors demonstrated the applicability to 
small-molecule structures. A closely related method 
involving a Patterson-function modification (squaring) 
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Fig. 1. Comparison of the effects of sharpening and low-order 
tnmcation on the density distribution for the example of a one- 
dimensional structure model. Original periodic density segments 
containing a single Gaussian peak (a) or a peak consisting of two 
overlapping Gaussians (b). The variance of the Gaussians is 
u = 1/200 of the period. The diffraction pattern is calculated for 
the reflection orders h =0 to h = 150. (c),(d) Reconstructed 
density after omitting reflection orders h = 1 to h = 30. (e),(f) 
Sharpened density, obtained by weighting the structure factors with 
the function exp[2(zrhu)2]. 

was suggested for application to protein structures 
(Hao, Harding & Campbell, 1995a). This method 
produced roughly correct (i.e. better than random) 
estimates of multiplet component intensities; no mea- 
sure of the uncertainty of the estimates could be 
obtained. Substantially more accurate estimates may 
be obtained from least-squares deconvolution of har- 
monics based on the measurement of symmetry-related 
reflection multiplets (Helliwell, 1992; Wakatsuki, 1993; 
Campbell & Hao, 1993; Bradbrook et al. ,  1995; Ren & 
Moffat, 1995b). However, this method requires sub- 
stantial redundancy in the observations. Furthermore, 
they have to be located in suitable ranges of the 
wavelength normalization curve. For example, if 
multiplet observations belong to an approximately 
linear region in the distribution of the normalization 
factor versus wavelength, the resulting least-squares 
systems tend to degenerate. The need for high 
redundancy in practice makes it necessary to collect 
Laue data at additional crystal settings. This excludes 
single-shot experiments and thus represents a severe 
drawback in all applications involving short time scales. 

All previously proposed methods of deconvoluting 
harmonics have in common that no solid justification is 
provided for treating a given reflection spot as single or 
multiple. In each of these procedures, the decision is 
made assuming a wavelength-independent diffraction 
limit as a 'soft parameter' that is empirically chosen to 
best predict spots that are visible in the Laue pattern 
(e.g. Hao, Harding & Campbell, 1995b). This is 
adequate in the case of monochromatic diffraction 
patterns. In Laue diffraction, however, this way of 
defining a diffraction limit has no physical justification. 
In fact, the incident X-ray intensity, the diffracting 
power of the crystal and other experimental factors vary 
with the wavelength. Therefore, the average signal-to- 
noise ratio for each resolution shell and thus the 
apparent diffraction limit clearly must be wavelength 
dependent. This was first demonstrated when analysing 
Laue exposures from yeast hexokinase P2 (Bartsch et 
al. ,  1990; Rupp, 1991). In this study, the apparent 
diffraction limit was determined by comparing observed 
to predicted patterns and found to vary between 2.5 
(for 2 = 0.95A) and 3.2,~ (2 = 0.65A); the wave- 
length dependence was in good agreement with a 
theoretical estimate taking the signal-to-noise ratio 
into account. Neglecting the wavelength dependence 
and assuming a universal soft diffraction limit leads to 
systematical under- or overprediction of the Laue 
pattern. Incorrect assignment of the components of a 
given reflection, for example omission of some higher 
harmonics, introduces a bias; it affects both the 
completeness and the accuracy of data in all resolution 
shells. 

We have developed a fundamentally new method of 
deconvoluting energy (and spatial) overlaps in Laue 
patterns from protein structures. The method provides a 
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complete and justified probabilistic solution. For each 
unique reflection that may be excited under the given 
experimental conditions defined by the wavelength 
bandpass and the geometries of the diffraction set-up 
and the detector, the best estimates of the structure- 
factor modulus, its square and their standard uncertain- 
ties are obtained. The results are independent of the 
multiplicity of the reflection; redundancy in the 
observation is not required. No soft parameters are 
involved. The only assumption made is the validity of 
Wilson statistics (Wilson, 1949). The new method 
follows a Bayesian statistical approach. The present 
paper describes the method together with the results of a 
test application to Laue data from orthorhombicotrypsin 
which extend to the highest resolution, 1.4A, ever 
reached up to now in protein Laue diffraction. 

2. Outline of the Bayesian method 

2.1. Bayesian analysis of monochromatic X-ray diffrac- 
tion data 

The use of probability theory following a Bayesian 
approach in the analysis of X-ray diffraction data was 
first proposed by Kheiker & Nekrasov (1970) for the 
case of monochromatic single-crystal diffraction. A 
similar concept formed the basis of the program 
TRUNCATE (French & Wilson, 1978) in the CCP4 
program suite. These developments aimed to find the 
best estimates of the structure-factor amplitude F and its 
square I from the intensity observation J, when J is 
small compared with the noise or even negative. A 
priori given information about I being positive and 
obeying Wilson's distributions was taken into account 
through probability density functions (PDFs), 

p(X) oc e x p ( - X /  (1) ) (la) 

p(X) c~ X -1/2 exp ( -X /2 (1 ) ) .  (lb) 

Expression (la) corresponds to acentric reflections 
(having phase ~p, 0 _< ~o _< 2~r), (lb) to centric reflections 
(~o = nrr/2, n = 0, 1, 2, 3). The symbol cx denotes 
'follows'. X is an/-associated random variable and (I) 
is a mean intensity at given resolution. 

Experimental observation of the reflection J provides 
parameters (J, o'j) of the normal probability density 
p(JIX) for the intensity. This information must be 
associated with the prior PDF p(X) through the Bayes 
theorem, which states 

p(XIJ) cc p(X)p(J]X) (2) 

and can be read as follows: the posterior PDF, i.e. 
probability of the observation J due to elementary 
hypothesis X, follows the probability of the hypothesis 
multiplied with the probability of the hypothesis to 
produce the observation. The best estimates for F, I and 
their uncertainties are given by the moments of the 
resulting posterior PDF. 

2.2. The Bayesian approach for the case of Laue 
diffraction 

The previously developed Bayesian method (Kheiker 
& Nekrasov, 1970) is limited to non-overlapping 
reflections and independent observations. In Laue 
diffraction; an identical approach may be applied to 
non-overlapping single reflections only. Analysis of 
Laue reflection multiplets, however, requires a Baye- 
sian approach that deals with multidimensional PDFs. 

An n-multiple Laue reflection intensity is given by the 
experimental observation in the form of 

J = aX. (3) 

Here, a = {a i} is a vector whose elements contain 
products of the Lorentz-polarization and wavelength 
normalization factors for the nXi components of the 
variable vector X. If several exposures are made, the 
products further contain overall scale and temperature 
factors from frame-to-frame scaling. The components 
of a are always positive. We assume that the 
uncertainties of a i are negligible compared with the 
observation uncertainty trj (this is discussed below). 

With the assumption of a normal distribution of J, the 
observation of a reflection multiplet yields a degenerate 
multivariate normal PDF over the n-dimensional space 
of X: 

p(JlX) cx e x p [ - ( a X -  J)2/2o-2]. (4) 

Fig. 2(a) shows an example of such a function in the 
case of two variables. If a set of m > 1 redundant 
observations J = {J1 . . . . .  arm} is present, insertion of 
their product in the Bayes formula will produce a more 
generalized form of the normal PDF (4): 

m 

p(JIX) = 1-[P(JilX) cx e x p [ - ( X -  R ) T c ( x -  R)/2]. 
i=1 

(5) 

The e_xpression contains the normal n x n matrix 
C = ArWA. The rows of the matrix A are formed by 
aj (j = 1 . . . . .  m). W is a diagonal matrix with elements 
Wj j -  or)) 2. The vector R may be found as any vector 
that satisfies the equation 

CX - ArWJ. (6) 

Owing to the positivity of the components of X, the 
resultant PDF is a truncated multivariate normal over 
the positive hyperquadrant of the X space. This PDF is 
never degenerate, even if the C matrix is. In a next step, 
we associate this PDF through the Bayes theorem with 
an appropriate Wilson prior for the components and 
obtain one of the following posterior PDFs on the 
positive hyperquadrant: 

p(XIJ) cx exp[-hx - (X - R ) r c ( x  - R)/2] (7) 

for a set of acentric reflections, hi = 1/(1)i, and 
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p(XIJ) oc f i  X71/2 exp[-hx - (X - R)rC(X - R)/2] 
i=1 

(8) 

for a set of centric reflections, h i = 1/2{I)i. Figs. 2(b) 
and (c) show p(XIJ) for the example of two variables. 
Within a given Laue multiplet, the reflection compo- 
nents are either all centric or all acentric. 

When the n-dimensional PDF is found, the resulting 
posterior probability density for the component X k is the 
projection ofp(XlJ) onto the (p, 0, Xk) plane: 

O 0  

(Fo) , = f X2/2p(XklJ) dX k (10) 
o 

0 0  

(/0), = f X,p(X,  IJ) dX, (11) 
o 

~ro), = (/0)k -- (Fo) 2 (12) 

OO 

f 2  = X~p(XklJ) dX k - (/0) 2. (13) 
0 

OO O O O O  

p(X, IJ) oc f . . .  f f p(XlJ) dX1..,  dXk_ldX/+i... (IX n 
o o o 

(9) 

(Figs. 2d,e). The best estimates for the structure-factor 
amplitude (Fo) k, it's square (Io) k and their standard 
uncertainties are given by the moments of the posterior 
PDF (9): 

2.3. Example illustrating Bayesian deconvolution 

Let us consider the example of an acentric reflection 
with multiplicity 2 and only one observation. This 
situation refers to a great part of the Lane data in an 
experiment aimed to obtain maximum crystallographic 
information from a minimum number of crystal 
settings. The PDF (9) in this case has the form (Fig. 2d) 

p(JIX) (a) 

0 

(a) 

p(X l J) p(X l J) 
(b) (c) 
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o 

(b) (c) 

p(X, l J), p(X2 l J) p(X, l J), P(X21 J) 

0.4 0.8 

0.3 0.6 

0.2 0.4 
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1,X2 ~ 6 Xl,X2 

(d) (el 

(e) 

P(X, m[l), P(X2 v21 J) P(X, ~rz l J), P(X2 v2 [l) 

0.5 1 1.5 2 2.5 3 11.5 1 1.5 2 2.5 

X l V2,X:lr~ Xl V2,X21n 

(f) (8) 
Fig. 2. (a) Joint PDF P(JIX) for the intensity components of a Laue reflection with multiplicity 2 obtained by a single hypothetical observation 

with intensity J = 5, trj = 1. (b),(c) Joint posterior PDFs with (b) acentric or (c) centric Wilson priors (1)1 = 3, (1) 2 = 1. (d),(e) Marginal 
posterior PDFs for intensities in the (d) acentric or (e) centric case. (f) ,(g) Marginal posterior PDFs for amplitudes in the (f)  centric or (g) 
acentric case. 
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p(X1) cx exp{[1/( (I)lal) - 1/( (1)2a2)]alX1/aj} 

x (1 + erf{[J - (0~j/(I)2a2) - X1a1]/21/2aj}). 

(14) 

The estimates (11) and (13) yield exact analytical 
expressions: 

[ (1 nt- ~IXx) ] (15) 
(Io)1 = (aj/al)  A12 nt" (Xl -- X2) ' 

Table 1. Posterior expected values, standard uncertain- 
ties and correlation coefficients for  the intensities of  
components derived with Wilson's prior f rom a set of  
hypothetical observations of  a double acentric Laue 

reflection with unit standard uncertainty 

The prior for the first component is assumed (l)la I = 20. In each cell, the 
moments are arranged in the scheme: 

al (lo)1 alaal(to)l 
0-2(/o)2 a2 0r12(1o)2 
c12 

Obser- 
vation 41o) 1 = (cr~j/a~){2A~2 - t - [2(1  + ~IX1)A12 + (1 + ~2)X 1 j 

- -  ~ l X l ] ( X l  - -  X2)  - 1  } - -  12 (16) - 3  01 

where 

~i = J /as  - aJ / (I) iai, 

Xi = (rr/2) 1/2 exp(~/2/2){ 1 + erf(~i/21/2)}, 3 

A i j  -~ ( 1 / ( I ) i a i -  1/(I)jaj) -1. 6 

The correlation coefficient is 
10 

c12 = ((4/a2a~){2A22 + [(2 + ~ l X l  "It- ~2x2)A121 

X ( X l -  X2)  - 1  } - - I o l l o 2 ) ( a l o 1 1 I o 2 )  -1/2. (17) 20 

In the special case (I)1a1 = (I)2a2 (~1 = ~2 = ~:, 50 
Xl " -  X2 = X ) ,  the formulae (15)-(17) transform in the 
following way: 7o 

(Io) i = (aj/al)[(1 + ~2)X + ~]/[2(1 + ~X)], (18) 

o~(to), = (~/a~)[2 + ~2 + (3~ + ~2)X]/[3(1 + ~X)] -/o2, 

(19) 

100 

Cl 2 = {(o.~j/ala2)[2 + ~2 + (3~ + ~2)X] 

rr  ~ - 1 / 2  (20) x [3(1 + ~X)] -1 - IoIo2}(1iolVlo2, . 

In order to illustrate the effect of the analysis, the 
posterior moments for a series of hypothetical observa- 
tions are listed in Table 1. The values of J / a j  range 
from - 3  to 100, (I)212 from 1 to 20; (I)lal was chosen 
to be 20. 

When the observed sum of component intensities is 
small, one notices as a rather trivial result that both 
terms are small and the estimates are practically 
uncorrelated. The case of J / a  s >_ 3 is more interesting. 
For the first term, which a priori is supposed to be 
stronger, one gets useful estimates even when the ratio 
(I)212/(I)1a I is as high as --, 75%. However, this does 
not mean at all that the second term may be ignored, not 
even when (I)2a2/(I)la 1 is only ~, 5%, since this would 
cause a shift in the estimates by more than a standard 
deviation. 

In most cases, the procedure affects both terms of a 
doublet. The posterior moments for the weaker term in 
general provide less accurate information, depending on 
the relative size of the components and on the signal-to- 

Prior for the second component (I)21,2 
1 5 I0 15 20 

0.27 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 
0.21 0.21 0.25 0.24 0.26 0.25 0.26 0.25 0.25 0.24 
-0 .048  -0 .055  -0 .056  -0 .057  -0 .057  
0.66 0.54 0.62 0.52 0.62 0.52 0.62 0.52 0.62 0.52 
0.43 0.39 0.58 0.50 0.60 0.50 0.61 0.51 0.62 0.62 
-0 .170  -0 .204  -0 .209  -0 .211 -0 .212  
2.21 1.1 1.75 1.1 1.68 1.1 1.66 1.1 1.64 1.1 
0.84 0.73 1.47 1.0 1.59 1.1 1.62 1.1 1.64 1.1 
-0 .521 -0 .618  -0 .626  -0 .628  -0 .630  
4.93 1.38 3.49 1.85 3.21 1.86 3.11 1.86 3.06 1.86 
1.02 1.0 2.56 1.77 2.89 1.83 3.00 1.85 3.06 1.86 
-0 .694  -0 .852  -0 .857  -0 .859  -0 .859  
8.90 1.45 6.21 2.83 5.44 2.95 5.16 2.96 5.03 2.96 
1.05 1.05 3.78 2.75 4.59 2.92 4.88 2.95 5.03 2.96 
-0 .732  -0 .937  -0 .943  -0 .943  -0 .943 
18.9 1.45 14.3 4.81 11.6 5.67 10.6 5.79 10.0 5.8 
1.05 1.05 5.61 4.72 8.35 5.64 9.44 5.78 10.0 5.8 
-0 .725  -0 .937  -0 .984  -0 .985  -0 .985  
48.9 1.45 43.3 6.64 34.4 12.5 28.4 14.2 25.0 14.4 
1.05 1.05 6.54 6.56 15.5 12.5 21.6 14.2 25.0 14.4 
-0 .725  -0 .989  -0 .997  -0 .998  -0 .998  
68.9 1.45 63.3 6.73 52.1 15.6 41.6 19.5 35.0 20.2 
1.05 1.05 6.66 6.66 17.8 15.6 28.3 19.5 35.0 20.0 
-0 .725  -0 .989  -0 .998  -0 .999  -0 .999  
98.9 1.45 93.3 6.74 80.6 18.2 63.3 27.0 50.0 28.9 
1.05 1.05 6.67 6.67 19.3 18.2 36.7 27.0 50.0 28.9 
-0 .725  --0.989 -0 .998  -0 .999  -0 .999  

noise ratio. Only in the case when (I)2a2 << (I)ia 1 and 
J >> aj is no information obtained about the second 
term (i.e. the posterior moments do not significantly 
differ from the prior ones). Of course, there is always a 
finite probability that the true value of intensity of the 
second term is even higher than the intensity of the first 
one. This is expressed by a joint posterior PDF, which 
results in a modified posterior expected value and an 
increase in the standard uncertainty. 

When (I)2a2 approaches the value (I)1a 1, i.e. when 
prior preference may not be given to any of the 
components, then evidently the probability for both 
components to have any intensity between 0 and J /a l  
will be uniform. As J / a j  ~ c~, lol --+ J /2a  i 
and lo,/ato ~ 31/2. For the components of the real Laue 
doublet, ~ substantial difference between priors may 
always be expected owing to the nature of the 
wavelength normalization curve and the dependence 
of (I) on sin 0/2. This forms the main difference of our 
approach to the Bayesian approach that Sivia & David 
(1994) proposed for an analysis of overlapping reflec- 
tions in monochromatic powder diffraction patterns. In 
their method, there is no difference in the priors; thus, 
use of the uniform positive prior is permitted. 
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2.4. Relationship between least-squares and Bayesian 
solutions 

When redundant observations are available (e.g. at 
different crystal settings) and C is a well defined matrix, 
(6) has a unique solution R. The posterior PDF for 
acentric reflections (7) and the exponential term in (8) 
both convert to a multivariate normal through a shift of 
the centre to the point 

R' = R -  C-lh.  (21) 

If all values R~/(C-1)~//2 > 3, then (10)-(13) can well be 
expressed by an expansion of the integral to the whole 
X space, and (.Fo)k = / ~ k  1/2 , (Io) k = R't, (7(io) k = (1-~-1~1/2 k ~" ]kk ' 
tY -1  I/2 (eo)~ = ( C ) k k  /2(Fo)k represent fairly good approxi- 
mations to the moments. In this case, our approach 
converges to the least-squares solution, which takes the 
components of R as the best estimates of intensities with 
the covariance matrix C -I (if proper weights are used). 

The use of the least-squares method becomes 
problematic not only when C is degenerate but also 
when some of the R i (at least one) are negative. 
Application of the TRUNCATE procedure (French & 
Wilson, 1978) to the estimates that are extracted in such 
a way would be completely invalid. Wakatsuki (1993) 
and Campbell & Hao (1993) proposed to solve the 
problem by eliminating outlying terms. The non-linear 
solution of (6) for the R~/2, as proposed by Ren & 
Moffat (1995b), yields identical results. From the point 
of view of the underlying PDFs, these methods use the 
coordinates for a point where the truncated PDF (5) 
adopts its maximum as estimates for the intensity and 
their square roots as estimates for the amplitude. Setting 
a negative observation to zero introduces a maximal 
bias to the data (French & Wilson, 1978), even in the 
case of independent measurements. In the case of a 
multiple reflection, negativity of R i for a component 
does not necessarily imply that the corresponding term 
is negligible. Rather, it may indicate the existence of 
strong correlations between the variables; under such 
conditions, the least-squares system is poorly defined. 
The joint PDF in this case is similar to that in the case of 
a completely degenerate system that is combined with 
an acentric prior (Fig. 2b). In both cases, although the 
weaker term has a maximum-likelihood value at zero, 
the cOntribution of the corresponding component to the 
observed intensity is significant. Eliminating this 
component yields systematically overestimated values 
and underestimated standard uncertainties of the 
intensities of the other terms. 

In the powder diffraction method of Sivia & David 
(1994), which only considers the amplitudes, the 
estimates were proposed to be taken as the maxima of 
the PDF (4) after transformation to the amplitude space. 
We stress the point that in general the best estimates are 
not provided by the maxima of the PDF but by its 
moments. For example, if we consider a Fourier 

transform of the resulting data, then its value at each 
point yields an expected value (approaching the 
maximum-likelihood value through the central limiting 
theorem) of the electron density only in the case when 
the first moments are taken as coefficients. 

3. Parameters influencing the precision in Laue data 
processing 

3.1. Wavelength dependence in the apparent diffraction 
limit 

Protein Laue data evaluation by standard procedures 
involves an uncertainty in the choice of the diffraction 
limit. Up to now, it has never been reported that a 
protein Laue data set was processed to the actual 
geometrical diffraction limit dmin = 2miJ(2sin0ma~)- 
Rather, a 'soft' diffraction limit at poorer resolution 
was chosen from inspections of the diffraction pattern or 
its gnomonic projection. An analogous procedure was 
proposed by Hao, Harding & Campbell (1995b) for 
introducing a 'soft' minimum wavelength ~'min, which 
may exceed the experimentally defined value. However, 
there is no physical justification for assuming a constant 
diffraction limit for a broad wavelength range if one 
considers the wavelength dependencies in the incident 
intensity, crystal reflectivity and hence the signal-to- 
noise ratio. The assumption of a constant diffraction 
limit causes under- or overprediction of the Laue 
patterns; thus, it may strongly affect the results of the 
evaluation (Bartunik, Bartsch & Huang, 1992). 

Using our test data (see below for details), one can 
demonstrate the effect of a truncation introduced by 
choosing a wavelength-independent diffraction limit. 
Careful visual analysis of the patterns showed 
reflections up to ca 1.8 A. We processed the data with 
the Daresbury Laue Software Suite (Cam.pbell, 1993) 
assuming a c o n s t a n t  dmin value of 1.8 A and 1.3,~, 
respectively. The results are presented in Fig. 3. One 
can clearly see from the processing to 1.8A that 
omission of 'invisible' high-resolution reflections yields 
data of lower accuracy. On the other hand, processing 
to 1.3ik resolution with a standard (non-Bayesian) 
procedure results in a dramatically reduced complete- 
ness, since more reflections are designated as multiples 
that cannot be deconvoluted. 

The wavelength dependence in the apparent resolu- 
tion limit in Laue diffraction patterns was first 
investigated for the example of Laue exposures of 
hexokinase on photographic film (Bartsch et al., 1990; 
Rupp, 1991). With the assumption of a smooth variation 
in dmi ~ on 2, an empirical distribution drain(2 ) was 
derived from a comparison of predicted and observed 
diffraction patterns. 

Our approach solves the problem in a most general 
way. The formulation involves the parameter {l}a/crj, 
which in fact is a wavelength-dependent signal-to-noise 
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ratio. If the pattern has been evaluated using an 
obviously overestimated diffraction limit (e.g. the 
geometrical diffraction limit) and unshified estimates 
taken from (10)-(13), not a single reflection will be lost 
due to overprediction. Furthermore, no bias is intro- 
duced in each particular observation. In the case when 
the contribution of a high-resolution component to a 
given multiplet intensity is negligible, then both 
Wilson's prior (la) and (lb) approach the 3+(0) 
function, and the posterior moments for the strongest 
term approach the expressions derived by Kheiker & 
Nekrasov (1970) for the case of a single reflection. 

The estimates and their uncertainties will produce a 
modified signal-to-noise ratio for each reflection or for 
entire resolution shells. This ratio may be used in the 
same way as with monochromatic data for truncating 
data at an appropriate resolution or for excluding 
individual reflections. 

3.2. Importance of precise wavelength normalization 

All formulae derived in §2 are based on the 
assumption that the coefficients a i are known accu- 
rately. Explicit consideration of errors in these 
coefficients leads to a highly multidimensional (n2m 
instead of n) integral in the calculation of the moments. 
In order to minimize the effects of these errors and to 
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Fig. 3. (a) Completeness and (b) Rmono of BPT Laue data processed 

with the standard procedure. Wavelength-independent diffraction 
limits were assumed at 1.8A (solid lines) or 1.3 A (dashed lines) 
resolution. The completeness for single reflections is indicated by 
grey lines. Rmono, i.e. the R factor of scaling to monochromatic 
data, is shown for singles only. 

improve the accuracy for the whole data set, the 
wavelength-normalization factors should be as precise 
as possible. When this is achieved, the remaining 
influence of the errors in a i may be neglected. This is 
demonstrated by the example given below. 

Previously developed wavelength-normalization 
techniques used a wavelength binning followed by 
power-series smoothing (Helliwell et al., 1989) or 
modelling by Tchebychev polynomials (Smith Temple, 
1989). However, if the wavelength normalization is 
based on measurements of symmetry-equivalent single 
reflections only, high redundancy in the measurements 
(e.g. at different crystal settings) is needed to achieve 
sufficient accuracy. Furthermore, there are difficulties 
in extending such normalization curves to the long- 
X-ray-wavelength range. If a reflection from a plane 
with spacing d is observed at 2 > 22m~n, then the 
reflection spot on the detector contains a further 
contribution corresponding to the plane spacing d/2  
unless there is systematic extinction. The contribution 
of the second harmonic might be negligible and, thus, 
the reflection spot effectively single. However, this may 
only be verified if both the ratio of the mean intensities 
at d and d/2 and the ratio between the wavelength 
normalization factors at 2 and 2/2 are known. 
Extrapolation of the polynomial to higher 2 values is 
not justified since its coefficients are physically mean- 
ingless. 

An alternative is to derive the wavelength-normal- 
ization curve from a reference crystal, not necessarily 
for the same structure, and to scale the Laue data to 
external monochromatic data. Multiple reference reflec- 
tions may be included. We subdivide the wavelength 
range into a suitable number of bins. Reliable bin scale 
factors require a sufficient number (not less than say 40) 
reference data points in each bin. The bin scale factors 
g/are obtained by least-squares solution of equations of 
the general form j r e f=  E Irnonoigi" The reference 
patterns should be processed with an overestimated 
wavelength range; the effective limits '~'min and 2ma x are 
defined on the basis of the resulting wavelength- 
normalization curve. Fig. 4 shows an example of a 
normalization curve that was derived in this way from 
measurements on beamline BW6 at DORIS. The 
discontinuities in the curve correspond to absorption 
edges of heavy atoms that are contained in the beam- 
defining components of the instrument (Au-coated 
planar and toroidal mirrors; Fe contamination of Be 
windows) and the imaging plate used as a detector (Ba, 
Br, Eu). Wavelengths in the close vicinity of such 
discontinuities were omitted during the binning proce- 
dure. Corrections for wavelength-dependent absorption 
by the sample crystal and its environment relative to the 
reference crystal and its environment are applied by 
fitting a single parameter. If the sample contains a 
resonant absorber with an absorption edge within the 
incident bandwidth, two (or more) parameters have to 
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be fired for two (or more) different segments of the 
entire wavelength range. 

4. Test application of the Bayesian method to Lane 
diffraction from trypsin at 1.4A resolution 

4.1. Detailed procedure of data processing 

The Bayesian method was tested using Laue data 
from benzamidine-inhibited /%trypsin from bovine 
pancreas (BPT) as a model structure. The crystal 
form is orthorhombic (space group P212121) with cell 
dimensions a = 54.8, b = 58.4, c=67 .8A.  The crystal 
structure was previously refined at 1.6A resolution 
(Marquart, Walter, Deisenhofer, Bode & Huber, 1983), 
and recently further refined at 1.0~, resolution (Popov 
& Bartunik, 1996). Laue data were collected on the 
double-focusing wiggler beamline BW6 at DORIS using 
a MAR imaging plate detector (diameter 300 mm). Ten 
exposures were recorded from a single crystal at a 
temperature of 283 K. For the first exposure, the crystal 
was oriented with its a axis close to the beam direction 
and the b axis close to the spindle axis. Subsequent 
exposures were taken at 10 ° intervals in the spindle 
rotation angle. A wavelength-normalization curve was 
derived from a reference data set. The wavelength 
range was determined as 0.52 < 2 < 2.1 A. The crystal 
mosaicity was ca 0.1 °. The detected Laue reflection 
spots had a size "-~ 400 ~tm (at FWHM) in both the radial 
and tangential directions. 

Processing of the data started by refining the crystal 
cell, orientation and detector sewing parameters with 
LAUEGEN (Campbell, 1993). A final prediction was 
made assuming a geometrical diffraction limit 
d~i n = 1.0 A. Spot integration was performed with the 
program INTLAUE (Shrive, Clifton, Hajdu & 
Greenhough, 1990). Negative observations were kept 
throughout the processing. Considering spatially over- 
lapping reflections, we treated observations as uncorre- 
lated if they resulted from a deconvolution of reflections 
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Fig. 4. Wavelength-normalization curve calculated from scaling to 
reference monochromatic data. a, b, c and d denote the absorption 
edges Au ~, L n, L m and Br K. 

that were separated by more than one FWHM. The 
intensities of the reflections with centroid-to-centroid 
distances less than one FWHM were added up and 
further treated in the same way as multiplets. 

The exponent index, c~, of the absorption correction 
coefficient of the form exp(o123), frame-to-frame scale 
factors and the temperature factors were fired as 
individual parameters for each of the exposures on the 
basis of redundant measurements of single reflections. 
Scaled singlet data were divided into appropriate 
resolution ranges and (I) values were calculated for 
the ranges d > 1.27A. Low completeness (47%) of the 
data in this step in general does not strongly affect 
the accuracy in the (I) values. -,~ 40 reflections in each 
bin are sufficient for reliable estimates (French & 
Wilson, 1978). This is in good agreement with the 
theory of structure-factor statistics (Stanley, 1955). At 
d < 1.27,~, the (I) values were strongly affected by a 
poor signal-to-noise ratio. Therefore, we used an 
extrapolation assuming that (1) in the high-resolution 
range followed the distribution in the mean squared 
scattering factor (Wilson, 1949). We interpolated the 
dependence over the range 2.0-1.27A and then 
extrapolated to 1.0A resolution. Prior moments for 
the intensities at d < 2.0tk were obtained by linear 
interpolation between the centres of neighbouring bins. 

In view of the fact that overprediction may introduce 
additional noise (not a systematical bias) in the case of 
non-deconvolutable spatial overlaps, predicted reflec- 
tions were removed if the prior probability of the 
reflection intensity being higher than the noise did not 
exceed 1%. An apparent resolution limit was obtained 
that varied, for 2 = 2rain,  between 1.10 A for the first to 
1.22 A for the last pattern; this reflects an increase in the 
overall temperature factor by 1.3 ,~2 during the entire 
data collection. Spot reintegration was then repeated 
with a correspondingly modified prediction of the 
pattern. 

In the further processing, all observations were 
treated in the same way, whether they were single or 
multiple. The redundant observations were found and 
the data were divided into subsets of cross-correlated 
reflections in such a way that each unique reflection 
appeared in one subset only. Normal matrices C were 
calculated for each subset, vectors R were found 
through the singular-value decomposition of C and h 
were formed with the prior. 

In the program TRUNCATE (French & Wilson, 
1978), single reflections are considered as negligible 
if [J-( t r~h)]  < - 4 c r j .  By analogy, the intensity 
contribution of the kth component of a multiple 
reflection may be treated as negligible when 
[(ArWjk - hk/Ckk]< --4C~ 1/2. Thus, we omit compo- 
nents on the basis of an estimate of an 'upper limit' of its 
significance. The estimates for the structure factors and 
the intensities were derived according to (10)-(13). 
Integration was carried out numerically, since we could 
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not derive an analytical expressions for the general 
case. This part of the procedure is the most complicated 
step. A special algorithm was implemented for sampling 
the multi-dimensional PDFs [(7), (8)], which permits 
the moments to be integrated in a reasonable time with a 
precision of approximately three significant digits in up 
to ten dimensions. A description of the details of this 
algorithm is outside the scope of the present paper. 

4.2. Results 

Bayesian estimates of the intensities and the structure 
factors were obtained for subsets containing up to ten 
unique reflections; they included multiplets up to order 
10. Resolution shells were rejected if (1)/(Crto)< 2. 
This limited the resolution of the final data set 
('Bayesian Laue data', BLD) to 1.4A. Further reflec- 
tions were omitted if the estimates of Crto exceeded (I); 
this limit corresponds to the unmodified prior. BLD 
contained in total 36 044 reflections. 

In order to illustrate the power of the new method, we 
produced an alternative data set ('standard Laue data', 
SLD) following a conventional procedure that is 
basically identical to the procedure usually applied, 
e.g. with the Daresbury Laue Software Suite (Campbell, 
1993). A constant 'soft' resolution limit of 1.65 A was 
used; use of a higher resolution limit would have led to 
even more serious overprediction problems. The same 
scale and wavelength-normalization factors were taken 
as for BLD. All multiple reflections were included that 
could be processed with a least-squares procedure. This 
yielded a total of 20 796 reflections corresponding to 
78% of the recorded unique reflections. At the same 
nominal resolution of 1.65 A, BLD yielded 95% of the 
recorded reflections. 

The completeness of both data sets is compared in 
Fig. 5. At low and medium resolution (d > 3.3 A), the 
completeness improves substantially (from 55% to 
84%), and, at high resolution (d > 1.65 A), from 77% 
to 90% in going from the standard processing to the 
Bayesian procedure. The completeness drops to or 
below 50% (Bradbrook et al., 1995) at d > 6.3 and 
3.7,~, for BLD and SLD, respectively. In addition, the 
Bayesian approach provides a substantial number of 
reflections at high resolution 1.65 > d > 1.4,~ (com- 
pleteness 68 %). 

For further comparison, agreement factors 
Rmono - -  ~ I l o  - -  Imonol/~(Io + Imono) w e r e  calculated 
with respect to monochromatic data (Table 2). Con- 
sideration of those reflections that are present in both 
data sets SLD and BLD shows that the improvement in 
the estimates is due to the different treatment of higher 
harmonics. It is further due to the fact that observations 
that introduce degenerate terms into the least-squares 
matrices were omitted during the standard processing 
but not in the Bayesian processing. For reflections that 
are present in BLD only, the accuracy in the estimates is 
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Table 2. R factor versus resolution from a comparison of 
Laue data to monochromatic data 

Resolution P~ono 
shell 
(,~) SLD* SLD BLD* BLDt BLD~: BLD 

5.00 0.045 0.050 0.046 0.031 0.15 0.099 
3.02 0.046 0.055 0.037 0.043 0.092 0.067 
2.39 0.053 0.066 0.051 0.058 0.16 0.073 
2.09 0.061 0.070 0.060 0.066 0.26 0.079 
1.90 0.079 0.081 0.076 0.073 0.41 0.107 
1.76 0.12 0.12 0.10 0.11 0.39 0.14 
1.65 0.17 0.18 0.16 0.17 0.39 0.20 
1.58 0.19 0.23 
1.51 0.23 0.27 
1.45 0.27 0.30 
1.40 0.28 0.31 

* Single reflections only. ? Reflections contained in both SLD and 
BLD. :~ Reflections contained in BLD only. 

lower, since all these correspond to degenerate 
components. 

Hajdu et al. (1991) showed that Patterson methods 
are very sensitive in revealing the effects of lack of 
completeness in data sets. We compared Patterson 
functions calculated with the Laue data with monochro- 
matic Patterson functions (at 1.0:k resolution). The 
correlation factor was found to increase from 0.60 to 
0.79 in going from SLD to BLD. 

In many time-resolved Laue diffraction studies, the 
most important criterion will be the contrast and quality 
in electron-density maps calculated with model phases. 
Figs. 6-8 demonstrate that the quality of electron- 
density maps of BPT improved dramatically when 
Bayesian estimates were included. In order to simulate a 
near-to-real Laue study, we used phases from a low- 
temperature (223 K) structure of BPT in an aqueous 
solution containing 70% methanol (Viehmann & 
Bartunik, 1993); all solvent molecules were removed 
from the model. Ten cycles of isotropic refinement 
against F o were carried out for both data sets with the 
program SHELXL93 (Sheldrick, 1993). This yielded 
final R=~IFo-Fc l /~ ,oFc  values of 0.23 for SLD and 
0.24 for BLD at 1.65 A resolution (R = 0.26 for BLD 
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Fig. 6. (2F o -F~) electron-density maps for Pro 124, Thr 125 and Ser 127. Structure-factor amplitudes from (a) SLD and (b) BLD. 

(a) (b) 

Fig. 7. (2F o - Fc) electron-density maps for Tyr 20. Structure-factor amplitudes from (a) SLD and (b) BLD. 

(a) (b) 
Fig. 8. (2F o -Fc)  electron-density maps for Tyr 59, Lys 60, Ser 61 and Gly 62. Structure-factor amplitudes from (a) SLD and (b) BLD. 
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at 1.4 ~, resolution). ( 2 F  o - Fc) difference Fourier maps 
that were calculated with SLD showed quite low 
contrast; about 20 discontinuities were visible along 
the main chain. With BLD, the number of main-chain 
cuts was reduced to one. In total, the Bayesian 
procedure resulted in ( 2 F  o - F c )  maps of comparable 
quality to monochromatic maps that were calculated at 
the same nominal resolution. 

In order to quantitatively assess the improvement in 
the quality of the maps, (F  o, 9~alc) maps that were 
calculated with structure-factor amplitudes from both 
Laue data sets were analysed in their correlation with 
monochromatic maps. In this case, phases were taken 
from an atomic resolution BPT model (Popov & 
Bartunik, 1996). An overall correlation factor, c, was 
calculated: 

c = ((PmPL) -- Pro)(PL)) 

X ((/92)_ (pm)2)--l/2((p2)_ (pL)2)-1/2. (22) 

Pm refers to the monochromatic (1.0A resolution) and 
PL to Lane electron density. We obtained c = 0.79 and 
0..90 for the maps with SLD and BLD coefficients, 
respectively. This corresponds to  real-space R factors 
(Br~nden & Jones, 1990) of 0.34 and 0.16, respec- 
tively. Further, all atoms (protein and solvent) in the 
model were subdivided into bins according to the atomic 
B factors. The bin width was set to 5 i( 2. Correlation 
factors were calculated separately for areas surrounding 
the atoms from each bin. Fig. 9 shows the correlation 
factors as a function of the atomic temperature factors. 
As one would expect, the improvement in the map 
quality is most evident in parts of the structure with high 
B values. 

5. Estimate of the completeness of Laue data from a 
single-shot experiment 

The Bayesian method of Laue data processing does not 
require redundancy in the measurement of structure- 
factor amplitudes. This is of particular interest for 
structural studies of non-cyclic reactions. In many 
applications, adequately short time scales may only be 
reached if all information that is required for structural 
analysis is obtained in a single Laue exposure. The time 
needed for changing the crystal orientation and for 
reading out an area detector is long compared with, for 
example, the typical lifetimes (1-10ms) of enzymatic 
reaction intermediates at ambient temperature. Even in 
the case of reactions that may be cycled (e .g .  
photodissociation of ligands from the iron in heme 
proteins), single-shot experiments may yield better 
results since they will be less affected by radiation 
damage or by variations in the excitation conditions. 

Our test experiment was carried out with an 
orthorhombic crystal. In this case, a maximum of 
55% of the asymmetric unit may be covered with a 
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single exposure (Clifton, Elder & Hajdu, 1991). The 
actual maximum coverage by a single exposure in this 
experiment was 27%. Most of the reflections were 
observed twice. From the doublets in the data that are 
truncated at 1.65 ]~, the redundancy was sufficient, for 
least-squares deconvolution of 28 systems containing 
four observations. For all of the 466 doublets repre- 
sented by two observations, the relative cross correla- 
tion was - 9 8  to -100%,  indicating complete 
degeneration. The standard procedure yielded a com- 
pleteness of 9% (Rmono -- 0.065) at d > 3.3 A, and of 
18.1% (Rmono=0.091) at 3 . 3 < d <  1.65A. The 
Bayesian processing up to the geometrical resolution 
limit yielded 24.8% of the unique reflections (i .e.  
90.5% of the recorded reflections) at d > 3.3 A, and 
21.3% (85.2%) at 3.3 < d < 1.65A. Rmon~ was 0.125 
at d > 3.3 A and 0.108 at 3.3 < d < 1.65 A. 

In the following, we estimate the completeness in the 
Laue data that may be obtained in the case of sufficiently 
high crystal symmetry from a single-shot experiment if 
the data are processed with the Bayesian method. 
Simultaneous exploration of a high percentage (> 80%) 
of an asymmetric unit in theory is feasible only for 
crystals belonging to the Laue class 4/mmm or higher 
symmetries (Clifton, Elder & Hajdu, 1991). We take 
tetragonal hen-egg-white lysozyme (P432:2; a = b = 
79.1 A, c = 37.9 A) as a hypothetical model structure. 
The maximal fraction of simultaneous symmetry-unique 
observations is obtained for a crystal orientation defined 
by the rotation angles ~o x = 0, % = 25, ¢Pz- 22.5° 
relative to the incident beam. Hereby, the X axis is 
parallel to the incident beam direction; the crystal axes 
a and c are along X and Z, respectively. With the 
assumption of a crystal-to-detector distance of 200 nun 
and a wavelength band of 0.52-2.1 A., the asymmetric 
unit is covered to 85.3% at d > 2A for this crystal 
orientation. In order to estimate the percentage of the 
reflection intensities that may be measured with 
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Fig. 9. Correlation factor derived from a comparison of Laue 
(Fo, ~0¢a1¢ ) density maps to a monochromatic map as a function of the 
atomic temperature factor. Solid line for BLD, dashed line for SLD. 
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sufficient accuracy, we request I/cr I > 2 at this resolu- 
tion. This criterion is related to the interpretability of 
the electron-density map. For a well ordered and 
sufficiently large crystal of such a small- to medium- 
size structure, reflections up to this resolution on 
average will have such high peak-to-background ratios 
that incoherent scattering from the crystal and its 
environment may be neglected. The essential source 
of errors, besides the counting statistics, will then be the 
limited accuracy in deconvoluted harmonic components 
of energetically overlapping spots. For doublets, the 
Bayesian method will yield the strong intensity 
components I 1 with I / t r  I > 2 when the ratio of the 
prior moments is ( l l )a l / ( I2 )a  2 > 0.75 (see §2.3). In the 
case of higher-order multiplets, the denominator is 
replaced by the sum of the prior moments for the 
remaining terms. We assume the same wavelength- 
normalization curve as in the test application to trypsin. 
For the calculation of the distribution of (I) versus 
resolution, we assume an overall temperature factor 
B = 9 A, 2. As a final result, we obtain a completeness of 
75% in the set of structure-factor amplitudes to 2,~ 
resolution (56% at 4A). Thus, a single-shot Laue 
exposure may in fact provide sufficiently high 
completeness for Fourier summation. The estimated 
completeness corresponds to 87.9% of the 
simultaneously recorded reflections; this is in good 
agreement with the percentage of reflections extracted 
from a single exposure in the test trypsin application. 
For higher-resolution ranges, e.g. 2.0 > d > 1.5 A, the 
incoherent scattering in general will substantially affect 
the signal-to-noise ratio; as a consequence, the 
completeness will be further reduced to < 65 %. 

Fig. 10. (2F o - F  c) electron-density map calculated with (BLD) 
structure-factor amplitudes from BPT and phases from trypsinogen 
for a section containing the residues 184-188. Bold lines indicate 
the residues that were omitted from the model. 

6. Contrast in Laue density maps and detection of 
conformational changes 

The contrast in electron-density maps that are calculated 
with a given set of Laue data depends on the quality of 
the phases. In time-resolved Laue studies, phases will 
be known for the initial structural state. The interpret- 
ability of Laue density maps for an excited state, e.g.  a 
reaction intermediate, will depend both on the differ- 
ences in the phases between the two structures and the 
quality and completeness of the Laue data. 

We investigated the contrast in electron-density maps 
that may result from Laue studies of protein structures 
undergoing extended conformational changes. As a 
hypothetical model, we considered a structural transi- 
tion from bovine trypsinogen to a trypsin-like con- 
formation. The activation domain comprising 33 
residues (i .e.  15% of the molecule) is disordered in 
trypsinogen and ordered in trypsin (Bode & Huber, 
1986). We aligned (using the program O; Jones, Zou, 
Cowan & Kjeldgaard, 1991) the structural model of 
trypsinogen to that of trypsin; the disordered residues 
were omitted. The remaining residues have a r.m.s. 
deviation of 0.26A. The r.m.s, phase difference 
between the two models is 48 °. We take trypsinogen 
as the 'initial state' and trypsin as the 'final state' of the 
disorder-order reaction. We assume that Laue diffrac- 
tion patterns were recorded from the final state and that 
Bayesian processing yielded the Laue data ( 'BLD') a s  
described above in the test application to the trypsin. 
The BLD structure-factor amplitudes were combined 
with the phases from the initial state model. Fig. 10 
shows an example of a (2F  o - F c )  difference Fourier 
map at 1.4 A resolution covering a segment of the final 
state structure that is disordered in the initial state. In 
this 'omit map',  the backbone is quite well defined; in 
fact, it would be possible to trace the main chain for the 
whole activation domain despite the lacking phase 
information. Furthermore, most side chains (except of 
Gly and Ala) can be identified. This simulation 
demonstrates the feasibility of detecting even very 
extended conformational changes in Laue density maps 
at high resolution if the quality and completeness of 
Laue structure-factor amplitudes are as high as obtained 
in the Bayesian processing of the trypsin data. 

7. Discussion 

In the test application to BPT, the Bayesian procedure 
yielded estimates for the intensity components of 
reflection multiplets. The accuracy of these estimates 
is necessarily lower than the accuracy that can be 
achieved from independent measurement of (single) 
reflections under given white-beam conditions. Never- 
theless, the quality of electron-density maps improved 
substantially, essentially due to much higher complete- 
ness at low and medium resolution. This represents a 
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significant gain from the Bayesian analysis as compared 
with the standard procedure. Most of the reflections in 
both data sets SLD and BLD at 1.65 ,~ resolution were 
represented by four observations; this redundancy did 
not yield well defined systems for least-squares 
deconvolution. This is partly due to a symmetric crystal 
setting. Under different crystal settings, the standard 
procedure can yield higher completeness. The improve- 
ment in the map quality demonstrates that the Bayesian 
method successfully copes with the degenerate systems. 
In the case of a single exposure, the least-squares 
method failed completely whereas the Bayesian proce- 
dure still was efficient. This demonstrates the potential 
power of the method for applications where highest 
possible completeness must be obtained from a mini- 
mum number of exposures. In general, redundant 
observations will also be present and the Bayesian 
procedure makes use of them. For example, corrections 
for wavelength-dependent absorption must be defined 
from redundant observations of single reflections. 
Redundancy in the measurements of multiple reflec- 
tions, even if they are recorded at such conditions that 
their wavelength normalization coefficients are linearly 
dependent, reduces the standard uncertainty in the 
deconvoluted components. The accuracy in the Baye- 
sian estimates noticeably increases when redundancy 
removes, at least partly, the degeneracy of the 
corresponding least-squares system. However, the 
existence of redundant measurements is not a necessary 
condition for obtaining statistically significant estimates 
from the Bayesian approach. 

We tested the method in an application to a well 
ordered crystal. In the case of crystals exhibiting 
broadened mosaicity, Laue patterns contain streaky 
and spatially overlapping reflections. Such broadening 
is often observed during or shortly after initiation of a 
reaction in the crystal (Bartunik, Bartunik & Viehmann, 
1992). With the new Bayesian method, there is no 
formal difference between the processing of partially 
overlapping reflections and the processing of a multiplet 
measured with redundancy provided that profile fitting 
is applied. Our formulation extends to this case without 
any modification simply by considering each individual 
pixel as an observation and incorporating the model 
profile value in the coefficient ai; such a further 
development of our software is being completed. In 
the present test application, we took observations as 
uncorrelated if reflections were separated by more than 
one FWHM. Observations resulting from more closely 
spaced reflections were taken as -100% correlated, 
simply because the correlation coefficients were not 
calculated by the peak-integration software of the 
Daresbury package. 

Structure refinement using Laue data should not take 
the squared structure-factor amplitudes derived from 
deconvoluted intensity components as target values but 
rather their linear superpositions corresponding to the 

experimental observations. The individual reflection 
intensity components that are extracted from energy or 
spatial overlaps may not be treated as independent 
observations. 

The previously discussed method is based on the 
validity of Wilson distributions, i.e. on the assumption 
that atoms are uniformly distributed over the unit cell. 
The Bayesian method may be extended if additional a 
priori information is available on the crystal structure 
under investigation. In time-resolved studies, the 
protein structure will be known approximately. For 
example, when investigating a reaction in the crystal, 
the structure corresponding to the initial state will have 
been determined previously. The initial model may be 
taken into account through conditional probability 
densities p(F olFmodel) (Srinivasan & Chandrasekharan, 
1966). Replacing the Wilson prior by this function in 
the Bayesian approach results in substantially sharper 
posterior PDFs for the components. Hence, more 
accurate estimates may be obtained. Software develop- 
ment for calculating moments for the case of conditional 
PDFs is in progress. 

8. Conclusions 

The Bayesian procedure of deconvoluting multiplets in 
Laue diffraction patterns represents a novel approach to 
solving the fundamental problems of Laue protein 
crystallography. As compared with all previously 
suggested methods of deconvolution, the Bayesian 
approach provides reliable estimates of the uncertainties 
in the deconvoluted reflection intensity components and 
the resulting structure-factor amplitudes. A meaningful 
weighting scheme may be derived from these estimates. 
Furthermore, the new method does not require 
redundant measurement of reflection intensities. 
Hence, Laue data collection may be limited to a 
minimum number of crystal orientations that are needed 
for a given space group in order to achieve sufficiently 
high completeness. This is of importance for time- 
resolved applications, in particular for time scales that 
are short (< 10 ms) compared with the time needed with 
presently available technology for changing the crystal 
setting. Model calculations tbr the example of a 
tetragonal protein structure showed that a single-shot 
Laue experiment combined with Bayesian processing 
may yield a completeness of 75 % in the structure-factor 
amplitudes to 2.0A resolution. Such time-resolved 
applications represent the main aim of Laue protein 
crystallography. 

A test application of the Bayesian method to Laue 
diffraction data from orthorhombic trypsin demon- 
strated its power. The completeness in the Laue data 
set improved strongly compared with the standard 
procedure followed up to now. The low-resolution 
hole was filled up significantly and structure-factor 
amplitudes were obtained up to substantially higher 
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resolution. In fact, much higher resolution (1.4,~) 
was reached than in any previous Laue data proces- 
sing. No 'soft' diffraction limit was assumed; rather, 
data were evaluated to the physically relevant 
(wavelength-dependent) diffraction limit without loss 
of completeness at low and medium resolution. The 
contrast in electron-density maps calculated with Laue 
structure-factor amplitudes and model phases 
improved dramatically. (2F o - F c )  difference Fourier 
maps became well comparable in quality to typical 
monochromatic high-resolution maps of the same 
structure. 

Structure-factor amphtudes of similar quality and 
completeness as obtained from the Bayesian processing 
of the trypsin Laue data may produce interpretable 
density maps at high resolution, even if the structure 
under investigation differs substantially from the 
structural model that provided the phases. The theor- 
etical example of a disorder-order transition in 
trypsinogen, involving a r.m.s, difference in phases of 
almost 50 ° , indicates the wide range of potential 
applications of Laue techniques. 

The power of the Bayesian method may be further 
enhanced. Spatial overlaps may be treated in a formally 
identical way as energy overlaps if profile fitting is 
included in the spot-integration routines. Furthermore, 
since approximate knowledge of the protein structure 
(e.g. in an initial state) may be assumed for time- 
resolved investigations, we may use conditional prob- 
ability densities that should provide even more accurate 
estimates of the structure factors derived from the 
deconvolution. We are presently carrying out such 
further developments. The new approach may provide a 
breakthrough in the applicability of Laue diffraction 
methods that until now has mostly been limited by poor 
contrast and quahty of the resulting electron-density 
maps. 

The authors gratefully acknowledge helpful discus- 
sions with Professor D. M. Kheiker, A. Lebedev and 
M. Kozin, and the support of C. Reissner in the crystal 
preparation. 
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